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Abstract

Metabolic modeling is a powerful tool to understand, predict and optimize bioprocesses, particularly when they imply
intracellular molecules of interest. Unfortunately, the use of metabolic models for time varying metabolic fluxes is hampered
by the lack of experimental data required to define and calibrate the kinetic reaction rates of the metabolic pathways. For
this reason, metabolic models are often used under the balanced growth hypothesis. However, for some processes such as
the photoautotrophic metabolism of microalgae, the balanced-growth assumption appears to be unreasonable because of
the synchronization of their circadian cycle on the daily light. Yet, understanding microalgae metabolism is necessary to
optimize the production yield of bioprocesses based on this microorganism, as for example production of third-generation
biofuels. In this paper, we propose DRUM, a new dynamic metabolic modeling framework that handles the non-balanced
growth condition and hence accumulation of intracellular metabolites. The first stage of the approach consists in splitting
the metabolic network into sub-networks describing reactions which are spatially close, and which are assumed to satisfy
balanced growth condition. The left metabolites interconnecting the sub-networks behave dynamically. Then, thanks to
Elementary Flux Mode analysis, each sub-network is reduced to macroscopic reactions, for which simple kinetics are
assumed. Finally, an Ordinary Differential Equation system is obtained to describe substrate consumption, biomass
production, products excretion and accumulation of some internal metabolites. DRUM was applied to the accumulation of
lipids and carbohydrates of the microalgae Tisochrysis lutea under day/night cycles. The resulting model describes
accurately experimental data obtained in day/night conditions. It efficiently predicts the accumulation and consumption of
lipids and carbohydrates.
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ANR Facteur 4 project. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: caroline.baroukh@supagro.inra.fr

Introduction

Metabolic modeling is a powerful tool for bioprocesses to

understand, predict and optimize the synthesis of intracellular

molecules of interest [1]. The main interest of this approach relies

on the use of the metabolic network knowledge and its associated

stoichiometry. The kinetics modeling of each metabolic reaction is

thus needed, especially to represent the transient dynamics of the

set of intracellular compounds. However, the experimental

difficulty to measure along time the dynamics of intracellular

compounds hampers the modeling and calibration of the large set

of reaction rates associated to the biochemical reactions of the

metabolic network [2].

To overcome these hurdles, a commonly used hypothesis is the

balanced-growth hypothesis, also called the Quasi-Steady-State

Approximation (QSSA). Internal metabolites are assumed not to

accumulate inside the microorganisms, which turns out to be a

reasonable hypothesis for most of the microorganisms growing

under constant conditions. This implies that every substrate uptake

leads to microbial growth and products excretion. Thanks to this

hypothesis, intracellular models are simplified and thus depend

only on the stoichiometry of the network, the reaction reversibility

and the uptake rate of the substrates.

Most of the metabolic modeling and analysis frameworks rely

on the balanced-growth hypothesis. These frameworks include

Flux Balance Analysis (FBA) [3], Dynamical Flux Balance Analysis

(DFBA) [4], Elementary Flux Modes (EFM) [5], Flux Coupling

Analysis (FCA) [6], Macroscopic Bioreaction Models (MBM) [7],

Hybrid Cybernetic Models (HCM) [8] and Lumped Hybrid

Cybernetic Models (L-HCM) [9]. Overall, these models predict

well biomass growth and excreted products synthesis [4,8,10,11] as

long as the balanced-growth hypothesis is verified [12].

However, the balanced-growth hypothesis is unreasonable for

microorganisms undergoing permanent environmental fluctua-

tions. Indeed, in this case, the everlasting dynamics of intracellular

accumulation and reuse play a key role in the cell metabolism.

This is the case for phototrophic microalgae submitted to day/

night cycles, which use photons to fix inorganic carbon during the
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day using photosynthesis. These promising organisms are seen as

good candidates for production of third-generation biofuels thanks

to their higher productivity compared to classical biofuels [13].

However, many improvements are necessary to become a cost

effective and environmental-friendly bioprocess [14]. For that, a

deep understanding of microalgae metabolism is necessary.

Microalgae store energy and carbon during the day so as to

support growth and maintenance during the night, because of

their autotrophic metabolism and the synchronization of their

circadian cycle on the daily light [15]. Therefore, intermediate

metabolites such as carbohydrates and lipids accumulate during

the day and are remobilized during the night (Figure 1D) [16].

This behavior cannot be described under the balanced-growth

assumption. One way to circumvent this issue is to represent these

metabolites as product of the cell during the day and substrate

during the night. Therefore applying one of the above-cited QSSA

metabolic modeling frameworks could a priori be possible to

represent carbon storage and better understand microalgae

metabolism submitted to day/night cycles. In literature, only

Knoop et al. [17], using the DFBA framework, computed

metabolic fluxes for a full day/night cycle. However, determining

an optimization function to represent carbon storage during the

day and its consumption during the night is not a trivial task.

Indeed, the classical optimization function ‘‘maximization of

biomass production’’ does not work: when applying it, all the

carbon available will go to biomass synthesis, and none to carbon

storage. To circumvent this issue, the solution is to either force

fluxes to carbon storage or to force the fluxes of biomass synthesis

Figure 1. Comparison of simulation results with experimental data. Simulation results were obtained by simulation of system (7) and are
represented by dashed or dotted lines. Experimental results were taken from [16] and are represented by dots, diamonds or squares. A. Evolution of
total biomass in terms of carbon content. Dashed line: model; Circles: experimental data; Grey line: light intensity. B. Evolution of total biomass in
terms of nitrogen content. Dashed line: model; Diamonds: experimental data; Grey line: light intensity. C. Evolution of chlorophyll (computed as a
fixed percentage of functional biomass). Dashed line: model; Circles: experimental data; Grey line: light intensity. D. Evolution of ‘‘energy and carbon’’
metabolites. Dashed line and Circles: carbohydrates (CARB); Dotted line and Diamonds: lipids (PA); Grey line: light intensity. Accumulation of carbon
and energy metabolites during the day and their consumption during the night for growth and maintenance purpose is well represented. E.
Evolution of functional biomass B. Dashed line: model; Squares: experimental data; Grey line: light intensity. F. Evolution of ‘‘buffer’’ metabolites at
branching points, as predicted by the model. Dashed line: glyceraldehyde 3-phosphate (GAP); Dotted line: glucose 6-phosphate (G6P); Small-dashed
line: phosphoenolpyruvate (PEP); Black line: GAP + PEP + G6P; Grey line: light intensity. Note that their carbon mass quota is relatively small (less than
4%).
doi:10.1371/journal.pone.0104499.g001
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and maintenance (ATP?ADPzPi) and other futile cycles. In

their work, Knoop et al. [17], forced fluxes to carbon storage by

changing the biomass composition at each time step. Their

method indeed predicted metabolic fluxes dynamically but did not

allow predicting the fluxes toward carbon storage and hence the

dynamic change of biomass composition. In a context of better

understanding and predicting microalgae metabolism for biofuels

production, prediction of carbon storage fluxes is essential if one

seeks the conditions in which microalgae accumulates more lipids

or starch to improve biofuels production yield. Hence, to model

such bioprocesses, a metabolic modeling framework that handles

non balanced-growth and dynamics behaviors is necessary.

The aim of the present paper is to present DRUM (Dynamic

Reduction of Unbalanced Metabolism), a new metabolic modeling

framework, which allows to model dynamically intracellular

processes where accumulation of metabolites plays a significant

role. In a first section, the modeling approach and its mathemat-

ical translation are described. Then the approach is applied

successfully to the carbon metabolic network of a unicellular

microalgae (Tisochrysis lutea) in order to illustrate it on a realistic

example, where simulation results are compared to experimental

data. Finally, assumptions of the present approach and their impli-

cations are discussed in a last section along with the perspectives of

the present work and the future possible applications.

Method

Let us consider a continuous bioprocess implying microorgan-

isms growing in a perfectly mixed stirred-tank reactor with

constant volume, dilution rate D and incoming substrate Sin. The

microorganisms consume extracellular substrates represented by

vector S to synthesize biomass B and produce excreted products

represented by the vector P. The metabolic network of the

microorganism is represented by the stoichiometric matrix

K[Rnm|nr containing nm metabolites and nr reactions.

By applying a mass-balance, the bioprocess can be represented

by the Ordinary Differential Equation (ODE) system:
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~
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where M represents the metabolites concentration vector com-

posed of biomass B, uptaken substrates S, intracellular metabolites

C and excreted products P. Concentrations are expressed in terms

of solution concentrations, not concentrations per unit of cell. The

kinetics vector v[Rnr represents the reactions rates (per biomass

unit) of the reactions of the metabolic network. By multiplication

to v, biomass B acts as a catalyzer of kinetics v. Due to a lack of

experimental data, v is often inferred [2]. The matrices

KS[RnS|nr , KP[RnP|nr , KC[RnC|nr and KB[R1|nr are the

stoichiometric matrices of the metabolic network for the substrate,

the products, the internal metabolites and the biomass

(nSznCznPz1~nm). They are based on the knowledge of the

metabolic network. The stoichiometric coefficients are thus known

a priori, they do not need to be determined experimentally. The

vector Min is the concentration vector of incoming metabolites in

the chemostat, composed of incoming substrate Sin.

The QSSA implies that internal metabolites do not accumulate

(KC :v~0). In the DRUM approach, instead, we assume that the

QSSA is applicable only to groups of metabolic reactions that we

call sub-networks (SNs). The remaining metabolites interconnect-

ing the sub-networks, which we name A (A#- C), are not under the

quasi-steady-state constraint. They are allowed to accumulate and

thus can behave dynamically, which provides the dynamics to the

whole network (Figure 2).

The QSSA for sub-networks relies on i) the presence of

metabolic pathways corresponding to metabolic functions ii) the

presence of group of reactions regulated together iii) the presence

of different compartments in a cell (e.g., mitochondrion). Groups

of reactions are thus determined taking into account these

intracellular mechanisms. It is to be noted that some intracellular

reactions can thus belong to several group of reactions. Mathe-

matically, this is represented by redundant columns in the

stoichiometric matrix K. The remaining metabolites (A) intercon-

necting the sub-networks formed using these rules are usually

either situated at a branching point between several pathways or

are end-products of metabolic pathways (e.g: macromolecules).

The sub-networks correspond mathematically to a partitioning

of the stoichiometric matrix K into sub-matrices KSNi formed of

grouped reactions:

K~ KSN1
::: KSNk

� �
ð2Þ

where KSNi
[R

nm|nSNi (
X

i
nSNi

~nr) represents the sub-network

i composed of i) incoming and outgoing metabolites SSNi and PSNi

allowed to accumulate and ii) intermediate metabolites CSNi at

quasi-steady state. SSNi and PSNi are either substrates S, products

P, biomass B or intracellular metabolites A allowed to accumulate.

Figure 2. Modeling approach decomposed into 4 steps. The
complete network (step i) is decomposed into sub-networks (SN)
assumed at quasi-steady state (step ii). These are reduced to a set of
macroscopic reactions (S

a
P) (step iii), for which kinetics are

defined (step iv). Linking metabolites interconnecting the SN are
allowed to accumulate (red circles) or be reused, which gives the
dynamics of the whole network. From step iv), an ordinary differential
equation (ODE) system is obtained, representing evolution of the
macroscopic scale of the bioprocess as well as intracellular processes
and accumulation of metabolites. In the full model described in step i),
K[Rnm|nr ,v[Rnr , while for the resulting model provided by our
approach, K 0[Rnm0|nE and a[RnE , such that nm0vvnm and nEvvnr .
doi:10.1371/journal.pone.0104499.g002
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Each sub-network is assumed to be in a quasi-steady-state:

Vi~1::k KSNi
:v

SNi
~0 ð3Þ

Under these assumptions and using elementary flux mode

analysis [7,12,18], each sub-network can be reduced to a reduced

set of macroscopic reactions:

Vi~1::k vSNi
~ESNi

:aSNi aSNi
§0

(KSSNi
:ESNi

):SSNi

aSNi
(KPSNi

:ESNi
):PSNi

ð4Þ

where ESNi is the matrix of elementary flux modes of sub-network

SNi and aSNi is the weight vector of the elementary flux modes.

aSNi can be interpreted as the kinetics of the macroscopic reactions

described by the stoichiometric matrix KSNi
:ESNi

[12].

By grouping all the sub-networks, the following system is obtained:
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Only metabolites A are authorized to accumulate. Any other

metabolite CjMC\A are assumed not to accumulate. Thus:

d(
Cj
B

)

dt
~0 VCj[C\A ð6Þ

CjMC\A have simple dynamics. Hence a reduced dynamic

model is obtained, defined by the metabolites vector M 0[Rnm and

the matrix K 0[Rnm|nE , with nE the number of macroscopic

reactions:
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System (7) is a simplified version of (1) with the same structure

but of much lower dimension, where accumulation of some

internal metabolites (A) is allowed. Only the kinetics a of the

resulting macroscopic reactions need to be determined. Classical

kinetics found in literature are mass-action, power-law, Michaelis-

Menten, Hill, cybernetic kinetics [19]. The choice is often

arbitrary and the total number of parameters in the kinetics

models needs to match the experimental data available so that a

model validation is achievable. Once kinetics a are determined, all

the metabolic fluxes can be computed using:

v~

vSN1

:::

vSNk

0
B@

1
CA~

E
SN1

:a
SN1

:::

E
SNk

:a
SNk

0
B@

1
CA ð8Þ

In the DRUM approach, particular attention has to be drawn to

the definition of biomass B, which is no longer the conventional

one. Biomass B is usually represented as an average composition of

macromolecules present in the cell. With QSSA, any chemical

element of substrate S ends up in either biomass B or excreted

products P. But in the present approach, accumulation of internal

metabolites is allowed. Hence, not all chemical elements from

substrate S ends up in biomass B or products P; they can also be

present in A. Total biomass (noted X) can then only be determined

thanks to a mass-balance on each chemical element:

XZ(t)~
X

A
ZA:A(t)zZB:B(t) ð9Þ

where Z correspond to a chemical element

(Z[ C; N; O; H; P; S; :::f g), ZA and ZB corresponds to the number

of chemical element Z per mole of accumulating metabolites A
and biomass B, A(t) and B(t) correspond to the concentrations of

A and B at time t, and XZ(t) correspond to the concentration of

chemical element Z in total biomass X at time t.
To sum up, the DRUM approach is based on the following

methodology, which is decomposed into a 4-step process (Figure 2):

i) Find in the literature or build the metabolic network of the

microorganism under study.

ii) Group metabolic reactions into sub-networks assumed to

follow the QSSA.

iii) Reduce each sub-network to a set of macroscopic reaction

using elementary modes analysis.

iv) Define kinetics for macroscopic reactions obtained and

deduce an ODE system.

For sake of pedagogy, in the next section, the DRUM approach

is illustrated on the carbon metabolism of unicellular microalgae.

Results

1. Metabolic Network
To assess DRUM, experimental data of a continuous culture of

Isochrysis affinis galbana (clone T-iso, CCAP 927/14) under day/

night cycle was used [16]. This microalgae clone, known to

accumulate high quantities of lipids was recently renamed

Tisochrysis lutea [20]. Cultures were grown in duplicates in 5L

cylindrical vessels at constant temperature (22u) and pH (8.2,

maintained by automatic injection of CO2). The following

measurements were performed: nitrates, particulate carbon and

nitrogen, chlorophyll, total carbohydrates and neutral lipid

concentrations [16].

With regards to the metabolic network, since Tisochrysis lutea
has not been sequenced yet, no genome-scale metabolic network

reconstruction was possible. Using the metabolic network of eukar-
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yotic microalgae available (Chlorella pyrenoidosa [21], Chlamydo-
monas reinhardtii [22–27], Ostreococcus tauri and Ostreococcus
lucimarinus [28]), we deduced a core carbon metabolic network

common to unicellular photoautotrophic microalgae containing

the central metabolic pathways (photosynthesis, glycolysis, pentose

phosphate pathway, citric acid cycle, oxidative phosphorylation,

chlorophyll, carbohydrates, amino acid and nucleotide synthesis).

We did not represent species-specific pathways such as the

synthesis of secondary metabolites since we assumed these

pathways to have negligible fluxes compare to the main pathways

and thus small impact on the other pathways. Indeed, secondary

metabolites have very low biomass concentration compared to

proteins, lipids, carbohydrates, DNA, RNA and chlorophyll. The

reactions of synthesis of the macromolecules (proteins, lipids,

DNA, RNA and biomass) were lumped, as classically done, into

generic reactions where stoichiometric coefficients of the precur-

sors metabolites were determined for Tisochrysis lutea thanks to

their measured average quota in those macromolecules [16]. The

detailed description of metabolic network reconstruction is

available in File S1 section 1.

The resulting metabolic network is composed of the light and

dark steps of photosynthesis in the chloroplast, the transport

reaction from chloroplast to cytosol, glycolysis, carbohydrate

synthesis, citric acid cycle, pentose phosphate pathway, lipids

synthesis, oxidative phosphorylation, protein, DNA, RNA, chlo-

rophyll and biomass synthesis (Figure 3). The network is composed

of 157 internal metabolites and 162 reactions, including 13

exchange reactions with the environment and 1 internal exchange

reaction (between the chloroplast and the cytosol). List of reactions

and metabolites are available in File S1 section 2 and 3.

2. Formation and reduction of sub-networks
Metabolic reactions were grouped by metabolic functions, tak-

ing into account cell compartments and metabolic pathways. Six

sub-networks were obtained (Figure 4) corresponding to i) photo-

synthesis, ii) upper part of glycolysis iii) carbohydrate synthesis iv)

lower part of glycolysis, v) lipids synthesis, vi) biomass synthesis.

Then, each sub-network was reduced to macroscopic reactions

thanks to elementary flux mode analysis [18]. To compute

elementary flux modes (EFMs) the software efmtool was used [29].

For all six sub-networks, the EFM could be computed easily, and

their number was low (less than 30). It should be noted that an

EFM analysis of the full network leads to 18776 modes (see File S1

section 4 for more details).

In the following sections, the formation and reduction of each

sub-network is developed. The results are summarized in Table 1.

2.1 Photosynthesis. Photosynthesis allows phototrophic or-

ganisms to generate cell energy and incorporate carbon autotro-

phically. The process takes place in the chloroplast and is

decomposed into two steps commonly called the light and dark

steps. The light step consists in the generation of cell energy (ATP,

NADPH) from water and photons, producing oxygen (R1).

Thanks to the energy of the light step, the dark step incorporates

carbon dioxide through Calvin cycle producing one 3 carbon

sugar (3-phosphoglycerate written G3P). Then G3P is transformed

Figure 3. Simplified central carbon metabolic network of a unicellular photoautrotophic microalgae. Central carbon metabolic network
is composed of photosynthesis in the chloroplast, transport reaction from the chloroplast to cytosol, glycolysis, carbohydrate synthesis, citric acid
cycle, pentose phosphate pathway, lipids synthesis, oxidative phosphorylation, protein, DNA, RNA, chlorophyll and biomass synthesis. Photosynthesis
is decomposed into two steps: the light step, which generates energy (ATP and NADPH) and oxygen using light and water and the dark step, which
uses the generated energy to incorporate carbon dioxide. The end-product of photosynthesis is a 3 carbon sugar (here glyceraldehyde 3-phoshate
written GAP), exported to the cytosol. GAP is situated in the center of glycolysis, and splits it into two parts: upper glycolysis and lower glycolysis.
Upper glycolysis generates glucose 6-phosphate (G6P), which is then either invested for carbohydrates synthesis or in the pentose phosphate
pathway to generate NADPH. Lower glycolysis generates phosphoenolpyruvate (PEP), which is then invested either in lipids synthesis or in the citric
acid cycle, which produces necessary intermediate metabolites for proteins, DNA, RNA, chlorophyll and biomass synthesis. Cofactors (FADH, NADH)
generated by citric acid cycle are transformed into energy (ATP) thanks to oxidative phosphorylation.
doi:10.1371/journal.pone.0104499.g003
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Table 1. Definition and reduction of sub-networks formed from metabolic reactions of a unicellular autotrophic microalgae.

Sub-network Macroscopic reactions Kinetics

Photosynthesis 30 Light + 3 CO2 + 2 H2O + Pi —. GAP + 3 O2 (MR1) vMR1 = kMR1*I

Upper glycolysis ATP + H2O —. ADP + Pi + H (MR2) vMR2 = 0

2 GAP + H2O —. G6P + Pi (MR3) vMR3 = kMR3*GAP

G6P + ATP —. H + ADP + 2 GAP (MR4) vMR4 = kMR4*G6P

Lower glycolysis GAP + ADP + Pi + NAD ,—. PEP + ATP + NADH + H2O + H (MR5) vMR5 = kMR5*GAP – k’MR5*PEP

Carbohydrate synthesis G6P ,—. CARB + Pi (MR6) vMR6 = kMR6*G6P – k’MR6*CARB

Lipids synthesis GAP + 16.61 PEP + 2 ADP + 13.46 NAD + 29.3 NADPH + 34.48 H + 2.15 O2 ,—.

PA + 14.61 Pi + 2 ATP + 13.46 NADH + 29.3 NADP + 4.31 H2O + 16.61 CO2 (MR7)
vMR7 = kMR7*PEP*GAP – k’MR7*PA

Biomass synthesis 3.13 PEP + 7.37 O2 + 4.46 H + 1.31 NO3 + 1.14 G6P + 0.11 PA + 0.03 SO4 + 0.0025 Mg
—.B + 11.67 CO2 + 4.23 Pi + 6 H2O (MR8)

vMR7 = kMR8*PEP*G6P*NO3

Each sub-network was decomposed into a set of macroscopic reactions thanks to elementary flux mode analysis. List of reactions, incoming and outgoing metabolites
for each sub-network are available in File S1 section 5. I corresponds to light intensity, expressed in mE.m-2.s-1.
doi:10.1371/journal.pone.0104499.t001

Figure 4. Central carbon metabolic network of a unicellular photoautrotophic microalgae decomposed into 6 sub-networks. The
metabolic network was built by deducing a core carbon metabolic network common to unicellular photoautotrophic microalgae containing the
central metabolic pathways of the metabolic network of eukaryotic microalgae available (Chlorella pyrenoidosa [21], Chlamydomonas reinhardtii [22–
27], Ostreococcus tauri and Ostreococcus lucimarinus [28]) and experimental data of [16]. Details of the network reconstruction process and lists of
reactions and metabolites are available in File S1 section 1–3. Metabolic reactions were grouped into sub-networks taking into account
compartments and metabolic pathways. After reduction, 6 sub-networks were obtained corresponding to i) photosynthesis, ii) upper part of
glycolysis iii) carbohydrate synthesis iv) lower part of glycolysis, v) lipids synthesis, vi) biomass synthesis. The resulting metabolites interconnecting
the sub-networks and allowed to accumulate are either at branching points of metabolic pathways (glyceraldehyde 3-phosphate (GAP), glucose-6-
phosphate (G6P) and phosphoenolpyruvate (PEP)) or end-products of metabolic pathways (lipids (PA), carbohydrates (CARB) and functional biomass
(B)) or energy metabolites (ATP, ADP,NADH, NAD, NADPH, NADP) or metabolites transported in the cell (Light, CO2,O2,Pi,H2O,H,NO3,SO4,Mg). B
corresponds to functional biomass and is composed of proteins, DNA, RNA, chlorophyll and lipids. List of macroscopic reactions for each sub-network
is available in Table 1.
doi:10.1371/journal.pone.0104499.g004
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in glyceraldehyde 3-phosphate (GAP) and transported to the

cytosol of the cell (R14).

As both the dark and light step of photosynthesis takes place in

the chloroplast and they both have the same metabolic function (to

incorporate inorganic carbon), the reactions of the two steps were

grouped into a sub-network and assumed at quasi-steady state.

Elementary flux mode analysis yielded only one Elementary Flux

Mode (EFM) (Table 1), giving one macroscopic reaction (MR1).

The stoichiometry of the macroscopic reaction obtained is in

agreement with literature: a quota of 10 photons are needed per

carbon incorporated [24,30].

2.2 Upper glycolysis. As GAP is the end-product of

photosynthesis and is situated at the center of glycolysis, glycolysis

was split according to GAP into two sub-networks: lower glycolysis

and upper glycolysis. In addition, dividing glycolysis into two parts

is meaningful since upper glycolysis and lower glycolysis have

different metabolic goals. Indeed, upper glycolysis synthesizes

glucose 6-phosphate (G6P) to produce reductive power (NADPH)

or to produce carbon storage compounds (carbohydrates), whereas

lower glycolysis produces phosphenolpyruvate (PEP), which is then

invested either in lipids synthesis or in the citric acid cycle to

generate precursor metabolites for protein, DNA, RNA, chloro-

phyll and biomass synthesis.

G6P, instead of glucose, was chosen as the output of upper

glycolysis because G6P is at a branching point between two

metabolic pathways with different metabolic functions: carbon

storage through the synthesis of carbohydrates and synthesis of

NADPH reducing power through the pentose phosphate pathway.

Metabolic reactions of upper glycolysis were grouped and

assumed at steady-state. Elementary flux mode analysis resulted in

3 macroscopic reactions (Table 1). Reaction (MR2) corresponds to

a futile cycle since energy (ATP) is dissipated without creation of

any metabolic product. This occurs when two metabolic pathways

run simultaneously in opposite directions and have no overall

effect other than to dissipate energy in the form of heat. Reaction

(MR3) corresponds to G6P synthesis whereas reaction (MR4)

corresponds to its consumption. The two equations cannot be

compiled into one reversible reaction because of the irreversibility

of the reactions transforming fructose 6-phosphate into fructose

1,6-biphosphate and vice-versa (R17-R18). Stoichiometry agrees

with literature, since 1 ATP needs to be invested to transform 6-

carbon sugars (G6P) into simpler ones (GAP) before getting 2 ATP

back with lower glycolysis [31].

2.3 Lower glycolysis. Lower glycolysis is a cascading set of

reactions which generates the key metabolite phosphoenolpyr-

uvate (PEP) and energy cofactors (ATP, NADH) from GAP.

Lower glycolysis was cut at PEP instead of acetyl-coA (AcCoA)

because of the presence of the anaplerotic reactions (R35, R36),

converting oxaloacetate into PEP and vice-versa.

Lower glycolysis was assumed at steady state. One macroscopic

reaction (MR5) was obtained with Elementary Flux Mode analysis

(Table 1). Stoichiometry is in accordance with literature: after

investment of one ATP in the upper part of glycolysis, 2 ATP are

returned with one phosphoenolpyruvate [31].

2.4 Carbohydrates synthesis. Carbohydrates (CARB) are

complex sugars stored in the cell. They are formed from 6-carbon

sugars (here G6P) by reverse glycolysis. All the reactions

participating to carbohydrate synthesis were grouped and assumed

to be in quasi-steady state. One reversible macroscopic reaction

(MR6) was obtained by reduction thanks to elementary flux mode

analysis (Table 1).

2.5 Lipids synthesis. Lipids include a broad group of

different macromolecules present in a cell. They contain at least

one hydrophobic part and are constituted of long carbon chains

linked to a sugar by an ether bound. In microalgae, only

Triacylglycerols (TAGs) can be transformed into biofuels [32].

Unfortunately, lipid metabolism of microalgae is poorly known

and it differs from bacteria and plants [33]. In the present network,

lipids are represented by phosphatidic acids (PAs), precursors of

many lipids including glycolipids and phospholipids for the

membrane and TAGs for carbon storage.

All the reactions participating in lipids synthesis were grouped

and assumed at quasi-steady state. One reversible macroscopic

reaction (MR7) for the synthesis of PAs was obtained with

elementary flux mode analysis (Table 1). Stoichiometric coeffi-

cients are non-integers because PAs are composed of two carbon

chains with different lengths (C12–C20). To group all PAs under

one entity, a generic reaction synthesizing an ‘‘average’’ PA (R123)

was used. Its stoichiometric coefficients were determined exper-

imentally using the proportion of the various fatty acids present in

the cell (see File S1 section 1.1 for more details).

The macroscopic reaction obtained satisfies balance of the

cofactors. For example 2 ADP yield 2 ATP, and 29.3 NADPH

yield 29.3 NADP. Interestingly, when lipids are synthesized, some

carbon atoms are lost through the production of CO2 and

conversely some carbon atoms are gained when consuming lipids.

2.6 Biomass synthesis. Protein, DNA, RNA and chloro-

phyll are necessary to synthesize biomass. Hence, all their synthesis

reactions were grouped into a sub-network and assumed at quasi-

steady state. Reactions for PA synthesis were not included because

a dedicated sub-network is already present in the model.

Therefore the biomass synthesis sub-network includes citric acid

cycle, oxidative phosphorylation, pentose phosphate pathway, N

and S assimilation, amino acids synthesis and nucleotide synthesis.

Figure 5. Stoichiometric matrix K’ describing the bioprocess
obtained after formation and reduction of metabolic sub-
networks. K’ as a much lower dimension (1668) than the starting
metabolic network (1576162). Lines of K’ correspond to kept
metabolites whereas columns correspond to macroscopic reactions
obtained thanks to elementary flux mode analysis on each sub-
networks. K’ can be divided into sub-matrices KS’ (in red), KA’ (in orange)
and KB’ (in green), according to the lines corresponding to substrates S,
intracellular metabolites allowed to accumulate A and functional
biomass B.
doi:10.1371/journal.pone.0104499.g005
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Citric acid cycle takes place in the mitochondrion and transforms

PEP into many precursor monomers for nitrogen assimilation,

nucleotide and amino acids synthesis. For each run of the cycle,

energy cofactors are generated (NADH, FADH2) and can be

breathed into ATP thanks to oxidative phosphorylation. ATP is

then reinvested into amino acids and nucleotide synthesis,

necessary for DNA, RNA, protein and chlorophyll synthesis.

Finally, reductive power (NADPH) necessary for nucleotide and

amino acids synthesis is synthesized through the pentose

phosphate pathway.

The reduction of this sub-network leads to 30 macroscopic

reactions, in which 24 yields biomass (File S1 section 6). All

macroscopic reactions not synthesizing biomass correspond to

futile cycles where carbon is converted to energy, which is then

dissipated. In terms of carbon, the 24 macroscopic reactions once

normalized by unit of biomass synthesis flux were only different in

their consumption of PEP and hence their production of CO2. A

principal component analysis on the EFMs revealed that the

difference was mainly due to two metabolic functions (incorpora-

tion of nitrogen and alanine synthesis) that could be performed

following different pathways, some less energy-efficient than others

explaining the difference of CO2 production (File S1 section 6,

Figure S1, Figure S2).

We assumed that the cell was maximizing biomass growth, and

hence minimizing carbon loss when synthesizing biomass.

Therefore, the elementary flux mode normalized by unit of

biomass synthesis flux with the best PEP/CO2 yield was chosen

(Table 1). The resulting macroscopic reaction MR8 consumes

PEP and NO3 for carbon and nitrogen sources, PA for functional

Table 2. Parameters obtained by the calibration of the
model.

Parameters Value

kMR1 11.07*1023 mE21.m2.s.mM.h21.mMB21

kMR3 223.53 h21.mM B21

kMR4 10.30 h21.mM B21

kMR5 436.95 h21.mM B21

k’MR5 5.00 h21.mM B21

kMR6 70. 00 h21.mM B21

k’MR6 6.50 h21.mM B21

kMR7 4.50 * 103 mM21.h21.mM B21

k’MR7 0.60 h21.mM B21

kMR8 2.18*104 mM22. h21.mM B21

doi:10.1371/journal.pone.0104499.t002

Figure 6. Fluxes between the 6 sub-networks at different time of the day. Fluxes were estimated thanks to model simulations. They were
normalized per moles of carbon consumed or produced. Thickness of arrows depends on intensity of the flux. At the beginning of the night (t = 0 h),
carbohydrates and lipids are already consumed so as to continue functional biomass growth. Most of carbohydrates and lipids are directly invested
for biomass and only few of their carbons are used for PEP synthesis. At the end of the night (t = 12 h), the metabolism is slow, because very few
carbons are left for growth and energy. At midday (t = 18 h), when light intensity is at its maximum, slightly less than a third of incoming carbons
goes to functional biomass (28,6%). The rest of it is stored into carbohydrates (37,1%) and lipids (34,2%). After one day (t = 24 h), the biological
systems has similar fluxes to the beginning (t = 0 h), showing the cyclic behavior of the metabolic network of a unicellular photoautotrophic
microalgae submitted to a day/night cycle.
doi:10.1371/journal.pone.0104499.g006
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and membrane lipids, G6P for NADPH synthesis through pentose

phosphate pathway, SO4 and Mg for proteins and chlorophyll

synthesis and O2 for ATP synthesis through oxidative phosphor-

ylation. 42.4% of incoming carbon ends up in functional biomass;

the rest is breathed through the TCA cycle because of energy

demands met thanks to oxidative phosphorylation.

3. Macroscopic reaction kinetics and ODE system
After splitting the network into sub-networks and obtaining the

EFMs for each sub-network, a reduced model described by 16

metabolites and 8 macroscopic reactions was obtained. The

number of macroscopic reactions is similar to the model of Guest

et al [34], where 10 lumped metabolic reactions were obtained.

Mathematically, these first two steps of the DRUM approach

translated into a reduced stoichiometric matrix K’ (Figure 5) of

much lower dimension (1668) than the starting one (1576162).

The definition of the reaction kinetics is the final building block of

DRUM. For each macroscopic reaction obtained after the

reduction step, simple proportional kinetics were assumed

(Table 1).

According to section 2, the model is described by the following

ODE system:

dM 0

dt
~

d

S

A

B

0
B@

1
CA

dt
~K 0:a:B{D:M 0zD:

Sin

0

0

0
B@

1
CA ð10Þ

where M’ is the vector of kept metabolites (1661) composed of

substrate S, metabolites authorized to accumulate A and

functional biomass B; K’ is the reduced stoichiometric matrix

(1668) and a is the kinetics vector (861) (Figure 5 and Table 1).

As explained in section 2, biomass B corresponds to functional

biomass. Total biomass, in terms of particulate carbon and

nitrogen, is computed using the following formulae:

XC(t)~
X

A
CA:A(t)zCB:B(t)

XN (t)~
X

A
NA:A(t)zNB:B(t)

ð11Þ

where A[ CARB; PA; PEP; G6P; GAPf g, CA and CB correspond

to the number of carbon atoms per molecule of A and B, NA and

NB correspond to the number of nitrogen atom per molecule of A
and B, A(t) and B(t) correspond to the concentration of A and B at

time t, and XC(t) and XN(t) correspond to the concentration of

carbon and nitrogen in total biomass X. As carbon and nitrogen

biomass were measured experimentally, we simulated carbon and

nitrogen content of the biomass. However, other chemical

elements can be easily computed using the formula above. No

additional parameters would be necessary as the above formula

only uses chemical element composition and concentrations of A
and B. Chemical element composition for A and B is available in

section 1.5 of the File S1. In addition, energy cofactors are not

taken into account in equation (11), as we assume their

contribution negligible in terms of carbon and nitrogen compared

to functional biomass and other molecules authorized to accumu-

late (CARB, PA, PEP, G6P & GAP).

Here, only the core metabolic network of a unicellular

autotrophic microalgae was represented. It does not take into

account energy necessary for mechanisms not represented by the

network, like for instance the turnover of macromolecules and

other so-called futile cycles. As it is clearly documented in the

literature [35], energetic cofactors ATP, NADH, NADPH and

FADH2 are difficult to balance. Usually, balancing is done

through maintenance terms like equation MR2, which are

determined so that growth rate and substrate consumption fits

experimental data [24,36]. Here, as carbon incorporation was not

measured (light absorbed per unit of biomass was not measured,

nor was CO2 dissolved concentration), estimation of maintenance

and hence cofactors balance is difficult to perform. We thus

decided not to consider the balance of energetic cofactors, and we

did not describe their fate (ATP, ADP, NADPH, NADP, NADH,

NAD).

The dynamic model has 10 degrees of freedom, each degree

represented by a parameter that needs to be calibrated. To

estimate parameters, we minimized the squared-error between

simulation and experimental measurements (taken as an average

of the duplicates) using the following formula:

error~
X

x

X
t
(xmeasured(t){xsimulated (t))2

x[ CARB; PA; XC ; XNf g
ð12Þ

To minimize the error, the Nelder-Mead algorithm [37]

(function fminsearch under Scilab (http://www.scilab.org)) was

used. To reduce the risk of finding a local minima, several

optimizations were performed with random initial parameters set.

Then the set fitting the best experimental data was chosen. As very

few data were available, all data were used to estimate model

parameters. Results of parameter identification are presented in

Table 2. The script file of the resulting model in Scilab format and

the experimental data are available as File S2 and S3.

4. Simulation
Model simulation reproduces accurately experimental data (see

Figure 1). In particular, the model correctly represents lipids and

carbohydrates accumulation during the day and their consump-

tion during the night (Figure 1D). The distribution of fluxes during

a classical day/night cycle is displayed in Figure 6 and in Video

S1.

The model predicts a minimum of carbon storage (lipids and

carbohydrates) one hour and a half after sunrise (13h37 and

13h17), when light intensity is sufficient to catch up with carbon

loss through respiration. In a similar way, the maximum is reached

three hours before sunset (20h50 and 21h02), when light intensity

is insufficient to catch up with carbon loss through respiration

(Figure 1D). Total carbon biomass follows a similar trend

(minimum at 13h19 and maximum at 21h17), suggesting that an

adequate harvesting time for biofuels production is three hours

before sunset (21 h), when lipids are at their maximum.

Interestingly, carbohydrates synthesis begins after and ends before

lipids synthesis (respectively 13h31 and 22h08 against 12h58 and

23h26). This is due to the fact that there is a higher carbon

demand for functional biomass synthesis from carbohydrates

(through G6P) than from lipids: 6.84 carbons from carbohydrates

are required per unit of functional biomass against 4.27 carbons

from lipids. At midday (t = 18 h), when light intensity is at its

maximum, carbohydrates and lipids synthesis are also at their

maximum. At this time, slightly less than a third of incoming

carbons goes to functional biomass (28.6%). The rest goes to

carbohydrates (37.1%) and lipids (34.2%) storage (Figure 6).

Contrary to carbon storage, functional biomass carbon quota

increases three hours before sunset until two hours after dawn,

taking carbon from the lipids and carbohydrates pool (Figure 1D

and E, Figure 6). Most of carbohydrates (through G6P) and most
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of lipids are directly consumed for functional biomass production.

Only few of their carbons are used for PEP synthesis (Figure 6). At

the end of the night and beginning of the day, the metabolism is

really slow, because very few carbons in the storage pools are left

for growth (Figure 6). Conversely, functional biomass carbon

quota decreases during the day because of its dilution in the total

biomass due to carbon storage. These obtained metabolic

behavior are in agreement with the description of flux distribution

given by Ross and Geider in [38].

Total biomass can be visualized in terms of particulate carbon

and nitrogen (Figure 1A and B). Carbon follows a similar trend to

carbohydrates and lipids, because carbon is only incorporated

through photosynthesis during the day, and is lost during the night

because of respiration to meet energy demands for continuing

functional biomass growth. The diurnal photosynthetic quotient

(moles of oxygen released per mole dioxide fixed) varies between

1.29 and 1.60 (Figure S3), depending on the light intensity, which

agrees with the typical range of 1.0–1.8 for algae [22]. During the

day, 79% of carbon loss is due to respiration and 21% to lipids

synthesis. During the night, 10% of carbon lost by respiration is

gained back by lipids consumption.

In the model, nitrogen content has exactly the same trend as

functional biomass, since functional biomass is the only intracel-

lular metabolite with nitrogen. It can be observed that there is

slight delay in the uptake of nitrogen between the model and

experimental data. In experimental data, the minimum is at

sunrise and the maximum at sunset, meaning that Tisochrysis lutea
stops incorporating nitrates as soon as the night starts. This time

period corresponds to the period where cells divide [16]. Mocquet

et al. in [39] have shown that nitrate uptake is stopped during cell

division, which could explain the difference between predicted

values and experimental data. However, including such mecha-

nisms at this stage in the model would be debatable. Chlorophyll is

also well predicted by the model, validating the hypothesis of a

constant ratio with functional biomass.

Finally, it is interesting to look at the evolution of PEP, G6P and

GAP concentrations predicted by the model. First, their concen-

trations are sufficiently low in terms of carbon, showing that

carbon storage is mainly done with lipids and carbohydrates.

However, their concentrations over time are not constant, and are

particularly different between day and night. Indeed, their

concentrations are much higher during the day than during the

night, giving certain flexibility to the metabolic network when

environmental conditions changes rapidly (here light). The ability

of metabolic network to face permanent fluctuating environmental

conditions consolidates one of the advantages of the DRUM

approach. Such flexibility is acquired through certain metabolites,

which can accumulate and therefore act as buffers. This could not

be achieved with a steady-state assumption.

Discussion

1. Assumptions in the DRUM approach
1.1 QSSA on sub-networks. The main assumption of the

DRUM approach is the quasi-steady state assumption on sub-

networks of the metabolic network. This assumption is supported

by the idea of cell function and cell compartment, often associated

to co-regulation and substrate channeling.

Indeed, in a cell, metabolic pathways composed of grouped

reactions regulated together are omnipresent. These reactions are

often synchronous: intermediate metabolites produced by a

reaction are nearly immediately consumed by the next reaction

in the cascade. This implies a quasi-steady state for the

intermediate metabolites. Many examples of such pathways can

be found in literature. One of the most illustrative ones is reactions

in cascade where the first reaction of the pathway is submitted to

feedback inhibition by the end-product of the last reaction [40].

In addition, spatial and molecule crowding are not negligible

phenomena in a cell. When not taken into account, they imply

that any intracellular metabolite can be consumed in any reactions

of the cell, even if the reaction occurs at a far loci or in a different

compartment where the molecule cannot be transported to and

needs to be resynthesized. This often leads to erroneous metabolic

flux distributions when using flux balance analysis and to a

combinatorial explosion of the number elementary flux modes

representing the metabolic network. For example, in the case of

the metabolic network of Chlamydomonas reinhardtii [24], when

ATP of the chloroplast is constrained to stay in the chloroplast, the

number of EFMs reduces from 4909 to 452. We thought

reasonable to assume that reactions inside a same compartment

and completing the same metabolic function are synchronous. For

example, the light and dark steps of photosynthesis can be

assumed synchronized so that all ATP and NADPH produced by

the first step are directly consumed in the second step.

An extreme illustration of space phenomena supporting our

quasi-state assumption is substrate channeling, where an interme-

diate metabolite is, instead of being released in the solution, passed

from enzyme to enzyme so as to avoid any loss to competing

pathways [41]. In this case, the notion of metabolic reaction is

difficult to define since the reaction is already a macroscopic

reaction composed of synchronous elementary reactions where

intermediate metabolites are under QSSA.

Even if regulation, substrate channeling and reactions loci in the

cell are not always well-known, we assumed that QSSA is a

biologically reasonable assumption for a group of reactions taking

place in the same compartment, synthesizing a same pathway end-

product or fulfilling a similar metabolic function. QSSA on sub-

network is a mild way to relax the balanced growth hypothesis,

without constraining the full network anymore. In most cases, the

main sub-networks will be the same, defined on metabolic

functions: upper glycolysis, lower glycolysis, TCA cycle, Calvin

cycle (for photoautotrophs), macromolecules synthesis.

It is very important to keep in mind that the DRUM approach

does not only split the initial network into sub-networks, but it also

duplicates some reactions that take place simultaneously at

different part of the cell within different functions. This point is

very important in order to keep a sound meaning to the reduced

networks derived from the EFM analysis.

1.2 Network splitting into groups of reactions. Network

splitting into groups of reactions is performed on the basis of the

above-mentioned criteria. However, these intracellular mecha-

nisms are not always well known. Hence, it is difficult to split the

network only taking into account experimentally proved report of

these phenomena on the microorganism studied. To overcome this

hurdle, network splitting was also performed thanks to educated

guesses using the topology of the metabolic network, the known

metabolic functions of some groups of reactions, the experimen-

tally known accumulating metabolites (e.g., lipids, carbohydrates)

and the key topological place of some metabolites. The metabolites

A allowed to accumulate are thus end-products of metabolic

pathways (e.g., macromolecules) or situated at a branching point

between several pathways.

In the case of Tisochrysis Lutea, the presence of the chloroplast

compartment was used to assume QSSA for photosynthesis. For

the rest of the metabolic network, reactions were grouped

according to known metabolic functions: carbohydrate synthesis,

upper glycolysis, lower glycolysis, lipids synthesis, biomass

synthesis. The accumulated metabolites GAP, PEP, G6P were
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chosen because situated at branching points of several metabolic

pathways. Indeed, GAP, the output of photosynthesis, is situated at

the middle of glycolysis and is also an output of the pentose

phosphate pathway. G6P is situated at the branching point

between carbohydrates synthesis and the pentose phosphate

pathway. Finally, PEP is situated at the branching point between

lipids synthesis, the TCA cycle for precursor metabolites necessary

for biomass synthesis and the anaplerotic reactions.

However, the choice of the decomposition is not totally

straightforward. The splitting of Tisochrysis lutea metabolic

network was performed by trial and errors with different possible

decompositions. Several possible configurations were tested and

the best one was kept. For example, the metabolic network was

cut, instead of glyceraldehyde 3-phosphate (GAP) at glycerone-

phosphate (DHAP) and instead of phosphoenolpyruvate (PEP) at

pyruvate (PYR). To cut at PEP seemed a better choice to fit

functional biomass data, but cutting at DHAP did not influence

the results since DHAP and GAP are interchangeable metabolites

(‘DHAP ,–. GAP’ (EC 5.3.1.1)). Whether the network should be

cut at GAP or DHAP could only be answered with additional

experimental measurements.

In a general way, only few decompositions work, but some have

close performances. Only experimental data will allow favoring

one from the other. Still, the presence of these equivalent

decompositions is beneficial since it points out the dynamic

measurement of metabolites to make so as to discriminate the best

model.

The method, in its first developmental stage, is not automatic

yet. However, systematic network splitting techniques could be

developed. For example, the network could be split according to

the metabolites participating in more than a threshold number of

metabolic reactions [42]. The network could also be split using

flux coupling analysis, where totally coupled reactions could be

used as a starting point for sub-networks [43]. Finally, any other

network clustering techniques could be used, from metabolic

function annotations to topology [44,45]. In addition, automation

of the method will allow discriminating the different possible

decompositions. Indeed, the automated decomposition algorithm

will yield a finite number of possibilities, which will be explored.

For each of them, a finite number of simple kinetics will be tested

and their kinetic parameters estimated to fit experimental data.

The Akaike Information Criterion could then be used to provide a

score for selecting the best candidate model [46], accounting for

the tradeoff between fitting and parameter parsimony. However,

selecting the best decomposition imposes a computational

challenge since global identification procedures, often requires,

in practice, expert knowledge to reduce the attraction of local

minima.

1.3 Network reduction into macroscopic reactions. Once

network splitting into sub-networks was performed, network

reduction is straightforward as it consists in computing Elementary

Flux Modes (EFMs) for each sub-network and reducing them to

macroscopic reactions by keeping only the transport reaction of

incoming and outgoing metabolites. This can be performed

automatically using softwares like efmtool [29] to compute the

EFMs and a small script to deduce the macroscopic reactions from

the EFMs obtained.

However there is an exponential explosion of the number of

Elementary Flux Modes (EFMs) when the number of reactions

increases, which implies an exponential explosion of the kinetics

parameters to estimate. This could make the approach intractable

and annihilate the advantage of DRUM compared to a full

kinetics model when using large sub-networks resulting for

example from the splitting of a genome-scale metabolic network.

To overcome this difficulty, small sub-networks should be favored

and there are available methods to reduce the number of EFMs

such as the use of experimental data [7], a projection of the EFMs

space into the yield space [47] or the clustering of EFMs into

phenotypic families [48]. These methods are semi-automatic, well

documented and already proved to be efficient to model biological

Table 3. Comparison of existing microalgae models representing carbon storage.

Reference Modeling type Macroscopic reactions Metabolic Fluxes Metabolites concentrations
Degrees of
freedom

[34] Macroscopic, Dynamic 11 0 7 12

[38] Macroscopic, Dynamic 5 0 7 18

[53] Macroscopic, Dynamic 3 0 4 12

[54] Macroscopic, Dynamic 6 0 7 9

[55] Macroscopic, Dynamic 4 0 5 15

[56] Macroscopic, Dynamic 1 0 2 5

[57] Macroscopic, Dynamic 2 0 3 7

[58] Macroscopic, Dynamic 11 0 7 8

[59] Macroscopic, Dynamic 6 0 7 7

[24] Metabolic, Static 0 160 0 1

[22] Metabolic, Static 0 484 0 2

[26] & [52] Metabolic, Static 0 280 7 22

[17] Metabolic, Static & Dynamic 0 760 9 45

Present approach Metabolic & Macroscopic, Dynamic 7 162 14 10

To compare the models, our definition of ‘‘degrees of freedom’’ stands for the number of information needed to simulate the models. For macroscopic models, degrees
of freedom relate to the kinetic parameters of the model. For FBA models, degrees of freedom relate to the number of constraints needed to determine the flux
distribution. Incoming light and biomass composition were not considered as degrees of freedom.
For [56] and [57], no macroscopic reactions are obtained per se, as growth is independent of nutrient uptake. Only population growth is represented (X

m(X )
2X ).

For [17], 7 biomass compositions were necessary to perform DFBA. We counted 6 of them as degrees of freedom.
doi:10.1371/journal.pone.0104499.t003
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systems [7,11,49]. Flux Balance Analysis (FBA) and by extent

Dynamic Flux Balance Analysis (DFBA) can also be seen as

methods to reduce the number of EFMs using optimization.

Indeed, a solution of FBA corresponds to a positive linear

combination of EFMs and the solution for any optimal product/

substrate ratio always coincide with an elementary mode [5].

Thus, when applying DRUM, such above-mentioned methods

can be automatically applied if the number of EFMs for some sub-

network is too high.

In the case of Tisochyris lutea, the biomass synthesis sub-

network is composed of 105 reactions. The calculation of the

EFMs resulted in 24 macroscopic reactions. Note that the number

of macroscopic reactions is already lower than the number of

reactions of the original sub-network. For a further reduction, we

kept the EFM with best PEP/CO2 yield when normalized by unit

of biomass synthesis flux, which was the same as optimizing

biomass growth since we minimized carbon loss through oxidative

phosphorylation.

In addition, DRUM drastically reduces the number of EFM

compared to a QSSA applied to the whole network thanks to the

application of QSSA only on sub-networks. Indeed, as EFMs are

only computed on small sub-networks and as the explosion of the

number of EFMs is exponential with the number of reactions, the

sum of the number of EFMs obtained from each sub-network is

smaller than the number of EFMs obtained for a QSSA on the

whole network. In the case of Tisochrysis lutea, DRUM reduces

the number of EFM from 18776 for the whole network down to

11. This implies a low number of degrees of freedom (10

parameters) compared to the other methods (cf Table 3) where

degrees of freedom are often hidden in parameters (e.g.: biomass

composition) or imposed fluxes (substrate consumption, product

formation, biomass growth, maintenance) varying along discrete

time instants.

1.4 Macroscopic reactions and their kinetics. Once all

macroscopic reactions modes are obtained, their kinetics need to

be defined, which is the final step of DRUM. This is a delicate

task, and unfortunately there is no unique or systematic way of

doing it. The choice is left to the researcher’s attention and

experience and is also relative to the experimental data available.

Classical kinetics found in literature are mass-action, power-law,

Michaelis-Menten, Hill, cybernetic kinetics [19], or more complex

allosteric regulations kinetics [50]. However, DRUM is an

approach looking for a model with a reduced complexity and

hence a minimum number of parameters.

In the case of Tisochrysis Lutea, since one parameter per

reaction turns out to be sufficient to explain the data, we kept this

minimum structure to follow a parsimony principle.

In future works, methods such as the one developed by Curien
et al. [50], based on in vitro reconstitution of the sub network,

could provide a way to experimentally determine kinetic models.

Alternatively, a multi-level optimization such as in [51] could also

be used. It would avoid the need to postulate kinetics and estimate

their parameters. Yet, defining the objective function is not a

trivial task.

1.5 Total biomass and functional biomass. Biomass B is a

variable used to predict the macroscopic biomass production,

which is generally measured in dry weight mass or in carbon mass.

In metabolic models, biomass B is usually represented as an

average composition of macromolecules present in the cell. For

example, in the case of Chlamydomonas reinhardtii, the biomass is

composed of 64.17% of proteins, 27.13% of carbohydrates, 4.53%

of lipids, 3.05% of RNA, 1.02% of chlorophyll and 0.11% of DNA

in average [24]. An artificial metabolic reaction of biomass

synthesis is thus added to the metabolic network, where the

stoichiometric coefficients of the reaction are the measured molar

proportions of each macromolecule present in the cell. In system

(1), biomass B acts as a growth catalyzer. This reflects the fact that

the proteins, nucleic acids and other macromolecules that are part

of the biosynthetic apparatus and structural material (e.g., cell

walls) catalyze the intracellular reactions and hence growth.

In the DRUM approach, some macromolecules can accumulate

and will therefore not appear in biomass B. We assumed that

macromolecules catalyzing growth such as proteins do not

accumulate and end up in biomass B, which we rename functional

biomass B. This relies on the assumption that storage compounds

of a cell does not have any other metabolic functions than to store

chemical elements (e.g., carbon) so as to supply energy and

chemical elements demands to continue growth when these

resources are no longer available in the environment. The term aB
in (7) is thus still meaningful, since functional biomass B catalyzes

growth as the term vB does in (1). An estimation of the total actual

biomass can then be obtained by summing up functional biomass

B and the storage terms A (cf equation (9)).

2. Comparison to other models
Microalgae models exist for more than 60 years and can be

divided into two main categories: dynamical macroscopic models

(see [15] for a full review) and static metabolic models

[17,22,24,26,52].

To date, there is only 9 macroscopic models representing

carbon storage (particularly lipids) in microalgae [34,38,53–59].

However, these models are empirical and do not rely on metabolic

knowledge. They describe efficiently some key metabolites, but

does not allow to understand the intracellular mechanisms taking

place in the cell and stay limited in the number of variables for

which accumulation dynamics can be forecasted (Table 3). Only

the models of [34] and [58] tried to incorporate some metabolic

knowledge. Guest et al [34] used lumped metabolic reactions

taken from literature and for which stoichiometric coefficients

were determined depending on the environmental conditions.

Fleck-Schneider et al [58] used a hybrid modeling technique

where ordinary differential equations described the macroscopic

scale of the bioprocess whereas flux optimization on a lumped

metabolic model was performed at each time-step at the metabolic

scale.

For metabolic models, only static flux predictions under

constant light were made, where lipids and carbohydrates were

at a constant ratio in biomass [17,22,24,26,52]. Even if,

sometimes, the influence of light intensity on metabolic fluxes

and biomass composition was studied [24,52], only the recent

model of Knoop et al [17] tried to simulate, thanks to dynamic flux

balance analysis, the evolution of metabolic fluxes during a day/

night cycle. The simulation was performed thanks to a time-

dependent biomass reaction based on literature, which allowed

forcing the value of the fluxes to the storage compounds. This

involves a much higher degree of freedom (45, cf Table 3) than

with DRUM (10) since the biomass composition must be

postulated at each time instant (or at some key instants and then

interpolated). However, a more systematic method for represent-

ing carbon accumulation and consumption over time is lacking.

Contrary to the work of Knoop and al. [10], DRUM allows

predicting at the same time all metabolic fluxes and the change of

biomass composition without forcing carbon storage to a given

value computed at each time step. This is the real advantage of our

method, where we can predict at the same time the macroscopic

scale (biomass synthesis, substrate consumption, and products

synthesis) and the intracellular scale (metabolic fluxes). To the
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authors’ knowledge, no one managed to predict them dynamically

using a metabolic framework managing non-balanced growth.

In relation to the existing microalgae models DRUM, the new

framework proposed in this paper, allowed for the first time to

predict dynamically at the same time the macroscopic scale of the

bioprocess (particulate carbon and nitrogen, Figure 1A and B) and

the metabolic scale (lipids, carbohydrates, chlorophyll and all

metabolic fluxes, see Figure 1C and D and E, Figure S4) with few

parameters to estimate (Table 3). The originality of DRUM lies in

the coupling of macroscopic and intracellular modeling approach-

es as discussed below.

3. Joining the macroscopic and the metabolic scales: a
bottom-up approach

Classical modeling approaches of bioprocesses can be sorted

into two main categories: modeling at the macroscopic scale,

where microorganisms act as catalyzers of macroscopic reactions

[60] and modeling at the intracellular scale, which takes into

account intracellular mechanisms such as biochemical reactions or

genetic regulation.

Macroscopic models have usually a low dimension, allow to

account for time varying experimental data and predict well the

macroscopic scale of bioprocesses such as substrate consumption

and biomass growth [60]. Unfortunately, the number of macro-

scopic reactions necessary to represent the bioprocess, their

expression, their stoichiometric coefficients and their kinetics need

to be determined experimentally [61,62]. In addition, macroscopic

modeling does not take into account intracellular mechanisms and

thus can hardly be used for optimization of intracellular molecules

of interest.

On the other hand, intracellular modeling describes accurately

mechanisms occurring inside the cell such as reactions between

metabolites catalyzed by enzymes, translation and transcription of

genes. These models are based on the knowledge of the metabolic,

transcriptomic and genomic networks. They allow a better

understanding of the cellular mechanisms and seem more

appropriate to describe and optimize bioprocesses implying

intracellular molecules. However, the use of intracellular models

for time varying experiments is hampered by the lack of

experimental data required to define and calibrate the kinetic

reaction rates of the biochemical reactions [2]. The common

assumption found in the literature to overcome this hurdle is the

balanced-growth assumption.

While these two modeling approaches bring answers to different

objectives, a remaining challenging question is how to couple

macroscopic and intracellular models to enlarge the prediction

capabilities of the model while keeping a model structure with a

low complexity level?

Two strategies can be applied in the attempt to couple the two

scales: a top-down approach, where some intracellular mecha-

nisms are included in details in a macroscopic model, or a bottom-

up approach where intracellular mechanisms are simplified and

linked to the macroscopic scale. The first approach consists in

finding and representing in details the preponderant intracellular

mechanisms that have an impact at the macroscopic scale. All

others intracellular mechanisms are assumed negligible. This

approach is thus very microorganism dependent and cannot easily

be generalized. Still, even if limited, this approach usually

improves the prediction of the macroscopic scale and helps to

better understand the bioprocess [38,63].

On the other hand, the reduction of intracellular mechanisms to

represent in a simple way the macroscopic scale of a bioprocess is a

difficult task, particularly given the lack of knowledge of

intracellular mechanisms and the lack of experimental data

available. Still, thanks to the balanced-growth hypothesis, system-

atic reduction frameworks were already developed for the

metabolic scale. Indeed, QSSA allows to link statically [3] or

dynamically [7,9] the intracellular scale (metabolic fluxes) to the

macroscopic scale (biomass growth). Even if some difficulties still

remain (e.g., a high number of elementary flux modes, no

accumulation of intracellular metabolites, balance of cofactors),

predictions are in good agreement with experimental data and

allow insightful understanding and optimization of bioprocesses

[7,9,11]. DRUM is the next generation of these existing bottom-

up approaches, where dynamics and intracellular accumulation

are taken into account, as well as spatial phenomena and

regulation to some extent, thanks to the network splitting.

4. Use of DRUM to guide metabolic engineering
Gene deletion studies (GDS) exploit the Gene-Enzyme-Reac-

tion relationship to predict the effect of the deletion of one or

several genes on the growth and/or on product synthesis [64–68].

Metabolic engineering can thus be guided thanks to in silico models

by GDS to find ideal gene targets to improve production yields of

molecules of interest. The DRUM approach could extend these

approaches at the levels of the metabolic function or of the reaction.

The first level consists in targeting metabolic functions

represented by the macroscopic reactions deduced from the EFMs

of each sub-networks. Deleting a metabolic function is hence

equivalent to delete a macroscopic reaction. In a practical way, as

EFMs are minimal metabolic behaviors of the cell [69], targeting

an EFM is the same as targeting one of the EFM non-null

reactions, since EFMs are non-decomposable vectors by definition

[69]. However one needs to be careful that the deletion of one

reaction does not affect another EFM using the same reaction.

The second level is the deletion of a reaction in the metabolic

network. This could yield the same result as deleting one metabolic

function, yet it could also imply accumulation of a previously non-

accumulating metabolite hence modifying the decomposition of

the sub-networks. It could also imply obtaining different EFMs

and hence different macroscopic reactions (e.g.: stoichiometric

coefficients). This could require a new decomposition and reduc-

tion of the sub-networks, and new kinetics to postulate and para-

meters to estimate.

For Tisochrysis lutea, the goal of our microalgae model was to

better apprehend the carbon metabolism of microalgae in day/

night cycles. It is clear that such a model has many direct

implications for metabolic engineering with microalgae. The fact

that cells can store very high amounts of lipids with a daily pattern

has clear consequences on the harvesting period (section 3.4). It

also indicates the paths and the enzymes to be targeted in order to

more efficiently accumulate lipids. For example, we can target the

carbohydrates production (MR6) and simulate de novo the model

to see whether it has an impact on lipids accumulation. The results

suggests, as expected, that the carbohydrates storage pool

diminished quickly at the expense of the lipids and functional

biomass pool (Figure S5, File S1 section 7). In addition, G6P

accumulates during the day and is consumed during the night,

standing in for the carbohydrates storage pool. The only difference

is that at the end of the night, the G6P pool is completely depleted.

What is also interesting is that the total carbon biomass X stays the

same: only a shift of carbon between the different pools is

observed. The day/night cycle growth still occurs and takes place

at a similar velocity, which was not straightforward since glucose-

6-phosphate concentration could have been too low to allow

functional biomass synthesis during the night.
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Conclusions

This paper presents DRUM, a new metabolic modeling

framework, which allows to predict dynamically the accumulation

of intracellular metabolites using metabolic knowledge. The

proposed strategy results from a tradeoff between complexity

and representativeness. It conciliates intracellular and macroscopic

models in a fluctuating environment.

DRUM was applied to the phototrophic unicellular microalgae

Tisochrysis lutea and led to a model describing well the accumulation

of lipids and carbohydrates in the microalgae under day/night cycles.

DRUM helps to better understand intracellular mechanisms at

the metabolic level when the biological system undergoes

environmental perturbations. In addition, DRUM could be used

in dynamic control frameworks to optimize the bioprocess. This

was not possible before, as models were static and did not allow

accumulation of intracellular metabolites.

Future work will consist in applying the methodology to mixed

ecosystems, so as to better understand the interactions taking place

between the individual species composing the microbial commu-

nity. Indeed, even if the scale is different, same philosophical

principles can be used to split the metabolic network of a microbial

community.

Supporting Information

Figure S1 Projection of elementary flux modes obtained
from the biomass synthesis sub-network in the PEP/
CO2 yield space. The reduction of the biomass synthesis sub-

network leads to 30 macroscopic reactions, in which 24 yields

biomass. In terms of carbon, the 24 macroscopic reactions were

only different in their consumption of PEP and hence their

production of CO2. A projection in the yield space PEP = f(CO2)

reveals two distinct metabolic behaviors.

(TIF)

Figure S2 Principal component analysis of the elemen-
tary flux modes obtained from the biomass synthesis
sub-network. The difference in the PEP/CO2 yield is mainly

due to two metabolic functions (incorporation of nitrogen (x-axis)

and alanine synthesis (y-axis)) that can be performed thanks to

different pathways, some less energy-efficient than others explain-

ing the difference in CO2 production.

(TIF)

Figure S3 Predicted photosynthetic quotient during a
day/night cycle. The quotient varies between 1.29 and 1.60,

depending on the light intensity, which agrees with the typical

range of 1.0–1.8 for algae [22].

(TIF)

Figure S4 Metabolic fluxes of the core network at
midday (18 h).
(PNG)

Figure S5 Comparison of the wild type and MR6-
deficient in silico models. The two models were then

simulated for 48 h, one with kcarb = 0 h21.mM B21, the other

one with kcarb = 70.00 h21.mM B21. The dilution rate and the

incoming substrate concentrations were set at 1 days21 and

4.018 mgN.L21.

(PNG)

File S1 Detailed metabolic network reconstruction
process of Tisochrysis lutea; list of reactions and
metabolites; analysis of the whole metabolic network;
list of sub-networks; list of macroscopic reactions
obtained for the biomass synthesis sub-network.
(PDF)

File S2 Scilab script of the day/night cycle model of
Tisochrysis Lutea.
(SCE)

File S3 Experimental data of continuous cultures of
Tisochrysis Lutea.
(XLS)

Video S1 Predicted metabolic fluxes between sub-
networks during a 24 h day/night cycle.
(MP4)
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